
 
 
 

 

  
Abstract— Problems of the blast loading of inelastic plates and 

shells have theoretical and practical importance. The plastic response 
of a conical shell to the blast loading is studied. Material of the shell 
is assumed to be a perfect plastic material. Piece wise linear 
approximations of the exact yield surface are used. Making use of the 
velocity field corresponding to the associated flow law the statically 
admissible field of stress resultants is constructed. For determination 
of residual deflections the method of mode form motions is applied. 
Numerical results are obtained for the exponentially decaying load 
intensity. 
 

Keywords—blast loading, conical shell, plasticity, stepped 
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I. INTRODUCTION 
he blast and impact loading of structural elements occurs 
in various situations of the real life including vehicle 

accidents, metal forming and so on. Evidently, in the cases of 
a blast loaded structure the role of elastic deformations is often 
negligible. 

That is why in modelling of the material behavior of 
structures and structural elements subjected to the blast or 
impact loading the use of the concept of a rigid-plastic body is 
justified (see Jones [5]). An excellent example of the solution 
procedure was developed by Hopkins and Prager [4] who 
obtained the exact solution for a rigid plastic circular plate 
subjected to the rectangular impulse. Later this concept was 
extended to other types of structural elements by many 
authors. Stronge and Yu [20] concentrated at the dynamic 
plastic behavior of beams and arches. 

The plastic response of plates and shells to impact and blast 
loading is investigated by Jones [5], Shen, Jones [18], 
Chakrabarty [1], Duffey [2], Kaliszky [6], Martin [15] and 
others. 

The solutions of the problems of limit analysis of circular 
conical shells are obtained by Hodge [3], Kuech and Lee [7], 
Lance and Lee [8], Onat [16]. Lellep and Puman [9-12] 
developed minimum weight designs for shells with piece wise 
constant thickness loaded by a rigid central boss and by the 
distributed lateral loading. Ross [17] has studied, both, elastic 
and inelastic shells and has concentrated at the problems of 
stability of conical shells with stiffeners. 
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Much less attention has been paid in the literature to conical 
shells subjected to dynamical loading. Lellep and Puman [13, 
14] studied the inelastic response of conical shells to the 
rectangular impulse and to the blast loading. 

In the present paper a theoretical method for determination 
of residual deflections of blast loaded inelastic conical shells 
with stepped thickness is developed. The formulation of the 
problem with basic hypotheses and integration of basic 
equations with numerical results are presented in detail. 

II. PROBLEM FORMULATION 
The dynamic plastic response of circular conical shells will 

be studied under the assumption that the stress strain state 
remains axisymmetric during the deformation. The loading is 
assumed to be a blast loading. Let the shell be simply 
supported at the outer edge for radius 𝑟𝑟 = 𝑅𝑅 and let the inner 
edge at 𝑟𝑟 = 𝑎𝑎 be completely free (Fig.1-2). Here 𝑟𝑟 stands for 
the current radius. The thickness of the shell wall is assumed 
to be equal to the constant ℎ𝑗𝑗  in the segment (𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑗𝑗+1) for 
each 𝑗𝑗 = 0, … ,𝑛𝑛. It is reasonable to denote 𝑎𝑎 = 𝑎𝑎0 and 
𝑅𝑅 = 𝑎𝑎𝑛𝑛+1. Thus  
 

ℎ = ℎ𝑗𝑗           (1) 
 

for 𝑟𝑟 ∈ �𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑗𝑗+1�; 𝑗𝑗 = 0, … ,𝑛𝑛. The parameters 𝑎𝑎𝑗𝑗 , ℎ𝑗𝑗  are 
considered as given constants. 

Let the intensity of the uniformly distributed transverse 
loading be 𝑃𝑃(𝑡𝑡) while 
 

𝑃𝑃(𝑡𝑡) = �
𝑝𝑝0𝑔𝑔(𝑡𝑡),   𝑡𝑡 ∈ [0, 𝑡𝑡0]

 
0,               𝑡𝑡 > 𝑡𝑡0      

�       (2) 

 
where 𝑝𝑝0 is a given constant and 𝑔𝑔(𝑡𝑡) – a decreasing function 
of time 𝑡𝑡. 

 
Fig. 1. Middle surface of the shell 

 
It is assumed as shown in (2) that an abrupt unloading takes 
place at the time instant 𝑡𝑡0. The subsequent motion of the 
material is due to the inertia. 
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The aim of the paper is to prescribe the stress strain state of 
the shell during the motion. Note that elastic deformations and 
strain hardening are assumed to be negligible. The 
geometrically linear theory of thin shells made of perfectly 
plastic materials will be employed. This theory admits to build 
up a piece wise linear field of kinematically admissible 
transverse velocities and to determine corresponding 
membrane forces and bending moments. 

III. GENERALIZED STRESSES AND STRAINS 
In the classical bending theory of plates and shells the stress 

components contributing the strain energy are bending 
moments 𝑀𝑀1,𝑀𝑀2 and membrane forces 𝑁𝑁1,𝑁𝑁2 in the 
transversal and circumferential directions, respectively.  

 
Fig. 2. Conical shell with piece wise constant thickness 

Let the dots denote the differentiation with respect to time and 
prims with respect to the current radius. The displacements 𝑈𝑈 
and 𝑉𝑉 in the radial and circumferential directions are assumed 
to be small in comparison to the transverse deflection 𝑊𝑊 and 
corresponding inertial terms will be neglected. 

The strain energy rate per unit area of the middle surface 
can be presented as (see Hodge [3], Jones [5]) 
 

𝐷𝐷0̇ = 𝑁𝑁1𝜀𝜀1̇ + 𝑁𝑁2𝜀𝜀2̇ + 𝑀𝑀1𝜘𝜘1̇ + 𝑀𝑀2𝜘𝜘2̇.   (3) 
 

Here 𝜀𝜀1̇ and 𝜀𝜀2̇ stand for the linear strain rates in directions 
“one” and “two” whereas 𝜘̇𝜘1 and 𝜘̇𝜘2 are the corresponding 
curvature rates. The total internal energy dissipation equals 
 

𝐷̇𝐷𝑖𝑖 = � 𝐷𝐷0̇

2𝜋𝜋  𝑅𝑅

0 𝑎𝑎

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.                               (4) 

 
The power of external loads is  
 

𝐷̇𝐷𝑒𝑒 = � �𝑃𝑃 − 𝜇𝜇ℎ𝑊̈𝑊�
2𝜋𝜋  𝑅𝑅

0 𝑎𝑎

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.                   (5) 

 
provided the inertial forces in the longitudinal and 
circumferential directions can be neglected. 

The principle of virtual work may be expressed as  
 

𝐷̇𝐷𝑖𝑖 = 𝐷̇𝐷𝑒𝑒 .          (6) 
 
In what follows we shall study the symmetrical behavior of a 
conical shell within the limits of the linear bending theory of 
thin shells. That is why the shear forces 𝑄𝑄1,𝑄𝑄2 as well as 
stress resultants 𝑁𝑁12,𝑀𝑀12  are absent in (3).  

The strain rates included in (3) must be in consistent with 
corresponding generalized stresses. It can be shown that (see 
Hodge [3], Kaliszky [6]) 
 

𝜀𝜀1̇ =
𝑑𝑑𝑈̇𝑈
𝑑𝑑𝑑𝑑

cos𝜑𝜑 ,                          
 

𝜀𝜀2̇ =
1
𝑟𝑟
�𝑈̇𝑈 cos 𝜑𝜑 + 𝑊̇𝑊 sin𝜑𝜑�, 

(7) 

𝜘̇𝜘1 = −
𝑑𝑑2𝑊̇𝑊
𝑑𝑑𝑟𝑟2 cos2 𝜑𝜑 ,              

 

𝜘̇𝜘2 = −
1
𝑟𝑟
𝑑𝑑𝑊̇𝑊
𝑑𝑑𝑑𝑑

cos2 𝜑𝜑 .            
 
Here 𝜑𝜑 stands for the angle of inclination of a generator of the 
middle surface of the shell (Fig. 2).  

The use of the principle of virtual work (6) with (3)–(5) 
furnishes the equilibrium conditions 
 

 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑟𝑟𝑁𝑁1) −𝑁𝑁2 = 0,                                
 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑟𝑟𝑟𝑟) − 𝑁𝑁2 tan𝜑𝜑 +
𝑟𝑟�𝑃𝑃 − ℎ 𝜇𝜇𝑊̈𝑊�

cos𝜑𝜑
= 0, (8) 

 

 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑟𝑟𝑀𝑀1) −𝑀𝑀2 −
𝑟𝑟𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑

= 0,               
 
where 𝑄𝑄 is the radial shear force. 

Note that the equilibrium equations (8) can be derived 
directly using the equilibrium conditions of a shell element 
loaded by the internal and external forces (the latters are the 
inertial force and the lateral transverse pressure). However, the 
internal generalized forces include the moments 𝑀𝑀1 and 𝑀𝑀2 
and membrane forces 𝑁𝑁1,𝑁𝑁2. 

It is easy to eliminate the shear force 𝑄𝑄 from the system (8) 
and present the last equations in (8) as  
 

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑟𝑟𝑀𝑀1) −𝑀𝑀2� − 𝑁𝑁2
sin𝜑𝜑

cos2 𝜑𝜑
+ 

+
𝑟𝑟

cos2 𝜑𝜑
�𝑃𝑃 − 𝜇𝜇ℎ𝑊̈𝑊� = 0.                       (9) 

 
This equation will be called the equation of motion. 

IV. THE YIELD CONDITION AND THE ASSOCIATED FLOW LAW  
The physical behavior of a solid or a structure can be 

prescribed with the aid of the yield condition and the yield 
surface. It is known that the yield surface is a closed convex 
surface in the space of generalized stresses. Since the exact 
yield surface in the space of generalized stresses is of 
complicate structure even in the case when the original 
condition in the space of principal stresses is piece wise linear 
many attempts have been made in order to get simple 
approximations of the yield surface (see Kaliszky [6], 
Chakrabarty [1], Skrzypek and Hetnarski [19], Jones [5]). In 
order to get the maximal simplicity Hodge [3] suggested the 
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idea of the approximation of the yield surface with “limited 
interaction between membrane forces and bending moments”. 

In the latter case two yield loci are presented independently 
on the planes of bending moments and membrane forces, 
respectively. 

Following Hodge [3] and Jones [5] we assume that the yield 
loci are presented by quadrangles on planes 𝑁𝑁1,𝑁𝑁2 and 𝑀𝑀1,𝑀𝑀2 
respectively. On the planes of non-dimensional stress 
resultants one has squares 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (Fig. 3) and 𝐴𝐴1𝐵𝐵1𝐶𝐶1𝐷𝐷1 (Fig. 
4).  

 
Fig. 3. Generalized square yield condition 

 
Here the following notation is introduced 
 

𝑛𝑛1,2 =
𝑁𝑁1,2

𝑁𝑁∗
,     𝑚𝑚1,2 =

𝑀𝑀1,2

𝑀𝑀∗
, 𝛾𝛾 =

ℎ
ℎ∗

.          (10) 
 

 
Fig. 4. Generalized square and diamond yield condition 

 
In (10) 𝑀𝑀∗ and 𝑁𝑁∗ are the limit moment and limit force, 
respectively. It is well known that (Jones [5], Kaliszky [6]) 
 

𝑀𝑀∗ =
𝜎𝜎0

4
ℎ∗2,𝑁𝑁∗ = 𝜎𝜎0ℎ∗, 

 
𝜎𝜎0 being the yield stress of the material. 

One has to take into account that the thickness of the shell 
wall is piece wise constant and ℎ∗ is one of the thicknesses 
ℎ0, … , ℎ𝑛𝑛 . It is reasonable to choose  
 

ℎ∗ = max
0≤𝑖𝑖≤𝑛𝑛

ℎ𝑖𝑖  
 
and to use the notation 
 

𝑀𝑀0𝑗𝑗 =
𝜎𝜎0

4
ℎ𝑗𝑗2,   𝑁𝑁0𝑗𝑗 = 𝜎𝜎0ℎ𝑗𝑗 .                     (11) 

 
It is well known in the theory of plasticity that the stress 

state of a body corresponds to a point lying inside the yield 

surface or on the yield surface. In the latter case the associated 
flow law states that the vector of strain rates is directed 
towards the external normal at each regular point of the yield 
surface (Jones [5], Chakrabarty [1]). At the non-regular points 
of the yield surface the strain rate vector is defined as a linear 
combination of these vectors calculated for adjacent pieces of 
the yield surface at this point. 

The deepened analysis shows that the stress profile could lie 
on sides 𝐴𝐴𝐴𝐴 (Fig. 3) and 𝐴𝐴1𝐵𝐵1(Fig. 4) of the yield loci. For 
these regimes it immediately follows from the associated flow 
law that  
 

𝜘̇𝜘1 = 0          (12) 
 

and 𝜘̇𝜘2 ≥ 0 according to Fig. 3 whereas 𝜀𝜀2̇ ≥ 0 and 𝜀𝜀1̇ = 0 in 
the case of the generalized square yield condition. 

Making use of (7) and (12) one obtains after double 
integration with respect to 𝑟𝑟 

 
𝑊̇𝑊 = 𝑓𝑓1(𝑡𝑡)𝑟𝑟 + 𝑓𝑓2(𝑡𝑡)      (13) 

 
where 𝑓𝑓1 and 𝑓𝑓2 are arbitrary functions of time 𝑡𝑡. Introducing 
the notation 
 

𝑊̇𝑊(𝑎𝑎, 𝑡𝑡) = 𝑊̇𝑊0(𝑡𝑡)       (14) 
 

and taking into account the boundary requirement at the 
simply supported edge 
 

𝑊̇𝑊(𝑅𝑅, 𝑡𝑡) = 0        (15) 
 

one can easily deduce from (13)-(15) that  
 

𝑊̇𝑊(𝑟𝑟, 𝑡𝑡) = 𝑊𝑊0̇ (𝑡𝑡)
𝑟𝑟 − 𝑅𝑅
𝑎𝑎 − 𝑅𝑅

 .               (16) 
 
 The equation 𝜀𝜀1̇ = 0  with (7) and the boundary condition 
 

𝑈̇𝑈(𝑅𝑅, 𝑡𝑡) = 0        (17) 
 

yields the trivial solution 𝑈̇𝑈 = 0. 
Note that in the case when (17) is not valid (in another 

support conditions) the displacement rate 𝑈̇𝑈 may remain 
unspecified. 

V.   INTEGRATION OF THE EQUATIONS OF MOTION 

It was assumed above that the stress-strain state of the shell 
corresponds to the horizontal sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴1𝐵𝐵1of the yield 
squares on planes of moments and membrane forces, 
respectively (Fig. 3, 4). Thus in each region 𝑟𝑟 ∈ �𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑗𝑗+1� 
where 𝑗𝑗 = 0, … ,𝑛𝑛 one has 𝑀𝑀2 = 𝑀𝑀0𝑗𝑗  and 𝑁𝑁2 = 𝑁𝑁0𝑗𝑗 .  

Thus 
 

𝑁𝑁2 = 𝑁𝑁0𝑗𝑗 ,𝑀𝑀2 = 𝑀𝑀0𝑗𝑗                        (18) 
 

for 𝑟𝑟 ∈ �𝑎𝑎𝑗𝑗 ,𝛼𝛼𝑗𝑗+1�;  𝑗𝑗 = 0, … ,𝑛𝑛. Inserting (18) in the first 
equation in (8) one easily obtains after integration 
 

𝑁𝑁1 = 𝑁𝑁0𝑗𝑗 +
𝐶𝐶𝑗𝑗
𝑟𝑟

                           (19) 
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for 𝑟𝑟 ∈ �𝛼𝛼𝑗𝑗 ,𝛼𝛼𝑗𝑗+1�. In (19) 𝐶𝐶𝑗𝑗  stand for arbitrary constants. 
Evidently, at the internal edge 𝑁𝑁1(𝑎𝑎) must vanish. Thus 
𝐶𝐶0 = −𝑁𝑁00𝑎𝑎0 and  
 

𝑁𝑁1 = 𝑁𝑁00 − 𝑁𝑁00
𝑎𝑎0

𝑟𝑟
                   (20) 

 
for 𝑟𝑟 ∈ (𝑎𝑎0, 𝑎𝑎1). Making use of the continuity of the 
membrane force 𝑁𝑁1 at 𝑟𝑟 = 𝑎𝑎𝑗𝑗+1 one can write  

𝐶𝐶𝑗𝑗+1 = 𝐶𝐶𝑗𝑗 + 𝑎𝑎𝑗𝑗+1�𝑁𝑁0𝑗𝑗 − 𝑁𝑁0𝑗𝑗+1�         (21) 
 
for each 𝑗𝑗 = 0, … ,𝑛𝑛. Making use of the recurrent relations (21) 
one obtains 
 

𝐶𝐶𝑗𝑗 = −𝑁𝑁00𝑎𝑎0 + �𝑎𝑎𝑖𝑖(𝑁𝑁0𝑖𝑖−1 − 𝑁𝑁0𝑖𝑖).
𝑗𝑗

𝑖𝑖=1

           (22) 

 
Substituting (22) into (19) results in  
 

𝑁𝑁1 = 𝑁𝑁0𝑗𝑗 +
1
𝑟𝑟
�−𝑁𝑁00𝑎𝑎0 + �𝑎𝑎(𝑁𝑁0𝑖𝑖−1 − 𝑁𝑁0𝑖𝑖)

𝑗𝑗

𝑖𝑖=1

�    (23) 

 
for 𝑟𝑟 ∈ �𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑗𝑗+1�;  𝑗𝑗 = 0, … ,𝑛𝑛.  

It follows from (16) that the acceleration can be presented 
as 

 

𝑊̈𝑊 = 𝑊̈𝑊0
𝑟𝑟 − 𝑅𝑅
𝑎𝑎 − 𝑅𝑅

                           (24) 
 
for  𝑟𝑟 ∈ (𝑎𝑎,𝑅𝑅). 

Substituting (18) and (24) in (9) after integration with 
respect to 𝑟𝑟 one obtains  

 
[(𝑟𝑟𝑀𝑀1)′ − 𝑀𝑀2] cos2 𝜑𝜑 − 𝑁𝑁0𝑗𝑗 𝑟𝑟 sin𝜑𝜑 + 

 

+𝑃𝑃
𝑟𝑟
2

2
− −

𝜇𝜇ℎ𝑗𝑗 𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑟𝑟3

3
−
𝑅𝑅𝑟𝑟2

2
� + 𝐵𝐵𝑗𝑗 = 0,         (25) 

 
for 𝑟𝑟 ∈ �𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑗𝑗+1�;  𝑗𝑗 = 0, … ,𝑛𝑛. Here 𝐵𝐵𝑗𝑗  stand for arbitrary 
constants. 

Because of the continuity of the shear force, or the quantity 
in square brackets at 𝑟𝑟 = 𝑎𝑎𝑗𝑗+1 one can write 

 
𝐵𝐵𝑗𝑗+1 = 𝐵𝐵𝑗𝑗 + �𝑁𝑁0𝑗𝑗+1 − 𝑁𝑁0𝑗𝑗 �𝑎𝑎𝑗𝑗+1 sin𝜑𝜑 + 

 

+
𝜇𝜇𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎𝑗𝑗+1

3

3
−
𝑅𝑅𝑎𝑎𝑗𝑗+1

2

2
� �ℎ𝑗𝑗+1 − ℎ𝑗𝑗 �       (26) 

 
for each 𝑗𝑗 = 0, … ,𝑛𝑛 − 1. Thus, it infers from (26) that 
 

𝐵𝐵𝑗𝑗 = 𝐵𝐵0 + ��(𝑁𝑁0𝑖𝑖 − 𝑁𝑁0𝑖𝑖−1)𝑎𝑎𝑖𝑖 sin𝜑𝜑
𝑗𝑗

𝑖𝑖=1

+
𝜇𝜇𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎𝑖𝑖3

3
−
𝑅𝑅𝑎𝑎𝑖𝑖2

2
� (ℎ𝑖𝑖 − ℎ𝑖𝑖−1)�

 
, (27) 

 

where 
 

𝐵𝐵0 = 𝑁𝑁00𝑎𝑎 sin𝜑𝜑 −
𝑃𝑃
2
𝑎𝑎2 +

𝜇𝜇𝑊̈𝑊0ℎ0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎3

3
−
𝑅𝑅𝑎𝑎2

2
� .       (28) 

 
The integration of (25) immediately gives  
 

�𝑟𝑟𝑀𝑀1 −𝑀𝑀0𝑗𝑗 𝑟𝑟� cos2 𝜑𝜑 − 𝑁𝑁0𝑗𝑗
𝑟𝑟2

2
sin𝜑𝜑 + 𝑃𝑃

𝑟𝑟
6

3
− 

−
𝜇𝜇ℎ𝑗𝑗 𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑟𝑟4

12
−
𝑅𝑅𝑟𝑟3

6
� + 𝐵𝐵𝑗𝑗 𝑟𝑟 + 𝐴𝐴𝑗𝑗 = 0,         (29) 

 
for 𝑟𝑟 ∈ �𝑎𝑎𝑗𝑗 ,𝛼𝛼𝑗𝑗+1�;  𝑗𝑗 = 0, … ,𝑛𝑛. Since the bending moment 𝑀𝑀1 
is continuous everywhere, it must be continuous at 𝑟𝑟 = 𝑎𝑎𝑗𝑗+1. 
Due to the continuity of 𝑀𝑀1 at 𝑟𝑟 = 𝑎𝑎𝑗𝑗+1 one has  
 

−𝑀𝑀0𝑗𝑗+1𝑎𝑎𝑗𝑗+1 cos2 𝜑𝜑 −
1
2
𝑁𝑁0𝑗𝑗+1𝑎𝑎𝑗𝑗+1

2 sin𝜑𝜑 + 𝐵𝐵𝑗𝑗+1𝑎𝑎𝑗𝑗+1 + 
 

+𝐴𝐴𝑗𝑗+1 − −
𝜇𝜇𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎𝑗𝑗+1

4

12
−
𝑅𝑅𝑎𝑎𝑗𝑗+1

3

6
� ℎ𝑗𝑗+1 =           

(30) 

= −𝑀𝑀0𝑗𝑗 𝑎𝑎𝑗𝑗+1 cos2 𝜑𝜑 −
1
2
𝑁𝑁0𝑗𝑗 𝑎𝑎𝑗𝑗+1

2 sin𝜑𝜑 + 𝐵𝐵𝑗𝑗 𝑎𝑎𝑗𝑗+1 + 
 

+𝐴𝐴𝑗𝑗 −
𝜇𝜇𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎𝑗𝑗+1

4

12
−
𝑅𝑅𝑎𝑎𝑗𝑗+1

3

6
�ℎ𝑗𝑗     

 
Thus  
 

𝐴𝐴𝑗𝑗+1 = 𝐴𝐴𝑗𝑗 + 𝑎𝑎𝑗𝑗+1�𝑀𝑀0𝑗𝑗+1 −𝑀𝑀0𝑗𝑗 � cos2 𝜑𝜑 +                 
 

+
1
2
𝑎𝑎𝑗𝑗+1

2 �𝑁𝑁0𝑗𝑗+1 − 𝑁𝑁0𝑗𝑗 � sin𝜑𝜑 + 𝑎𝑎𝑗𝑗+1�𝐵𝐵𝑗𝑗 − 𝐵𝐵𝑗𝑗+1�  (31)  
 

+
𝜇𝜇𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎𝑗𝑗+1

4

12
−
𝑅𝑅𝑎𝑎𝑗𝑗+1

3

6
� �ℎ𝑗𝑗+1 − ℎ𝑗𝑗 �          

 
for 𝑗𝑗 = 0, … ,𝑛𝑛 − 1.  

At the free edge the radial bending moment must vanish. 
Taking this into account one obtains from (28), (29) 

 

𝐴𝐴0 = −
𝑎𝑎2

2
𝑁𝑁00 sin𝜑𝜑 +

𝑃𝑃
3
𝑎𝑎3 + 

+
𝜇𝜇𝑊̈𝑊0ℎ0

𝑎𝑎 − 𝑅𝑅
�−

𝑎𝑎4

4
+
𝑅𝑅𝑎𝑎3

3
� + 𝑎𝑎𝑀𝑀00 cos2 𝜑𝜑   (32) 

 
Combining (27), (31), (32) one obtains 
 

𝐴𝐴𝑗𝑗 = 𝐴𝐴0 + ��𝑎𝑎𝑖𝑖(𝑀𝑀0𝑖𝑖 − 𝑀𝑀0𝑖𝑖−1) cos2 𝜑𝜑 −
𝑗𝑗

𝑖𝑖=1

−
𝑎𝑎𝑖𝑖2

2
(𝑁𝑁0𝑖𝑖 − 𝑁𝑁0𝑖𝑖−1) sin𝜑𝜑

−
𝜇𝜇𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎𝑖𝑖4

4
−
𝑅𝑅𝑅𝑅𝑖𝑖3

3
� (ℎ𝑖𝑖 − ℎ𝑖𝑖−1)�    (33) 

 
for 𝑗𝑗 = 1, … ,𝑛𝑛. 
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Substituting (27), (28) and (31)-(33) in (29) one can define 
the bending moment 
 

𝑀𝑀1 = 𝑀𝑀0𝑗𝑗 +
1

cos2 𝜑𝜑
�
𝑟𝑟
2
𝑁𝑁0𝑗𝑗 sin𝜑𝜑 − 𝑃𝑃

𝑟𝑟
6

2

+
𝜇𝜇ℎ𝑗𝑗 𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑟𝑟3

12
−
𝑅𝑅𝑟𝑟2

6
�� −     

(34) 

−
1

cos2 𝜑𝜑
��

𝜇𝜇𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎𝑖𝑖3

3
−
𝑅𝑅𝑎𝑎𝑖𝑖2

2
� (ℎ𝑖𝑖 − ℎ𝑖𝑖−1) − 𝐵𝐵0

𝑛𝑛

𝑖𝑖=1

−�𝑎𝑎𝑖𝑖(𝑁𝑁0𝑖𝑖 − 𝑁𝑁0𝑖𝑖−1)
𝑗𝑗

𝑖𝑖=1

sin𝜑𝜑 −
1
𝑟𝑟
𝐴𝐴0� − 

−
1

𝑟𝑟 cos2 𝜑𝜑
��𝑎𝑎𝑖𝑖(𝑀𝑀0𝑖𝑖 − 𝑀𝑀0𝑖𝑖−1) cos2 𝜑𝜑
𝑗𝑗

𝑖𝑖=1

−
𝑎𝑎𝑖𝑖2

2
(𝑁𝑁0𝑖𝑖 − 𝑁𝑁0𝑖𝑖−1) sin𝜑𝜑

−
𝜇𝜇𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎𝑖𝑖4

4
−
𝑅𝑅𝑎𝑎𝑖𝑖3

3
� (ℎ𝑖𝑖 − ℎ𝑖𝑖−1)� 

 
for 𝑟𝑟 ∈ �𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑗𝑗+1�;  𝑗𝑗 = 0, … ,𝑛𝑛. Note that in (34) and elsewhere 
the following rule of summation is assumed to hold good, 
namely  

�𝑧𝑧𝑖𝑖 = 0,
0

𝑖𝑖=1

 

 
where 𝑧𝑧𝑖𝑖  is an arbitrary member of the summation. 

It follows from (34) that the boundary condition 𝑀𝑀1(𝑅𝑅, 𝑡𝑡) =
0 is satisfied if  

 

𝑅𝑅𝑀𝑀𝑛𝑛0 +
𝑁𝑁𝑛𝑛0𝑅𝑅2

2
−
𝑃𝑃𝑅𝑅3

6
−
𝜇𝜇𝑊̈𝑊0ℎ𝑛𝑛𝑅𝑅3

12(𝑎𝑎 − 𝑅𝑅) − 

−��
𝜇𝜇𝑊̈𝑊0𝑅𝑅
𝑎𝑎 − 𝑅𝑅

�
𝑎𝑎𝑖𝑖3

3
−
𝑅𝑅𝑎𝑎𝑖𝑖2

2
� (ℎ𝑖𝑖 − ℎ𝑖𝑖−1)� −

𝑛𝑛

𝑖𝑖=1

 

(35) 

−𝑅𝑅𝑅𝑅0−𝐴𝐴0 −���𝑅𝑅𝑎𝑎𝑖𝑖 −
𝑎𝑎𝑖𝑖2

2
� (𝑁𝑁0𝑖𝑖 − 𝑁𝑁0𝑖𝑖−1) sin𝜑𝜑

𝑛𝑛

𝑖𝑖=1
+ 𝑎𝑎𝑖𝑖(𝑀𝑀0𝑖𝑖 − 𝑀𝑀0𝑖𝑖−1) cos2 𝜑𝜑

−
𝜇𝜇𝑊̈𝑊0

𝑎𝑎 − 𝑅𝑅
�
𝑎𝑎𝑖𝑖4

4
−
𝑅𝑅𝑎𝑎𝑖𝑖3

3
� (ℎ𝑖𝑖 − ℎ𝑖𝑖−1)� = 0. 

 
Substituting the constants 𝐴𝐴0 and 𝐵𝐵0 from (28) and (32) in 
(35) one can define the acceleration 
 

𝜇𝜇𝑊̈𝑊0 =
𝑎𝑎 − 𝑅𝑅
12𝑇𝑇

�−𝑅𝑅𝑀𝑀𝑛𝑛0 −
𝑅𝑅2

2
� 𝑁𝑁𝑛𝑛0 +

𝑃𝑃𝑅𝑅3

6
−
𝑎𝑎2

2
𝑁𝑁00 −

𝑃𝑃𝑎𝑎3

3
− 

(36) 

�−�(𝑁𝑁0𝑖𝑖 − 𝑁𝑁0𝑖𝑖−1) �𝑅𝑅𝑎𝑎𝑖𝑖 −
𝑎𝑎𝑖𝑖2

2
�

𝑛𝑛

𝑖𝑖=1

sin𝜑𝜑 + 𝑎𝑎𝑖𝑖(𝑀𝑀0𝑖𝑖 − 𝑀𝑀0𝑖𝑖−1)� 

 
where for the conciseness sake the following notation is used 
 

𝑇𝑇 = −𝑅𝑅ℎ0 �
𝑎𝑎3

3
−
𝑅𝑅𝑎𝑎2

2
� +

𝑎𝑎4

4
−
𝑅𝑅𝑎𝑎3

3
                   

+ �(ℎ𝑖𝑖 − ℎ𝑖𝑖−1)�
𝑎𝑎𝑖𝑖4

4
−
𝑅𝑅2𝑎𝑎𝑖𝑖2

2
� .         (37)

𝑛𝑛

𝑖𝑖=1

 

 

VI. DETERMINATION OF RESIDUAL DEFLECTIONS 
According to the assumptions made above the deflection 

rates at each point of the shell are defined by (16) where 𝑊̇𝑊0 is 
the transverse velocity at the free edge of the shell as shown 
by (14). 

One can easily recheck that for each 𝑡𝑡 ≥ 𝑡𝑡∗ this quantity can 
be determined with the help of the acceleration as 
 

𝑊̇𝑊0(𝑡𝑡,𝑃𝑃) = �𝑊̈𝑊0

𝑡𝑡

𝑡𝑡∗

(𝜏𝜏,𝑃𝑃)𝑑𝑑𝑑𝑑 + 𝑊̇𝑊0�𝑡𝑡∗,𝑃𝑃(𝑡𝑡∗)�     (38) 

 
where 𝑡𝑡∗ > 0 is an arbitrary instant of time. Let us study the 
both stages of deformation in the greater detail.  

A.   The first stage (0 ≤ 𝑡𝑡 ≤ 𝑡𝑡0) 
During this stage the shell is subjected to the blast loading 

of intensity 𝑃𝑃 = 𝑝𝑝0𝑔𝑔(𝑡𝑡). Taking 𝑡𝑡∗ = 0 in (38) and bearing in 
mind that  
 

𝑊̇𝑊0(0) = 0,𝑊𝑊0(0) = 0     (39) 
 
one immediately obtains 
 

𝑊̇𝑊0(𝑡𝑡) = �𝜓𝜓
𝑡𝑡

0

(𝜏𝜏,𝑃𝑃)𝑑𝑑𝑑𝑑                     (40) 

and 
 

𝑊𝑊0(𝑡𝑡) = ��𝜓𝜓
𝜏𝜏

0

𝑡𝑡

0

(𝜉𝜉,𝑃𝑃)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑              (41) 

 
where 
 

𝜓𝜓�𝑡𝑡,𝑃𝑃(𝑡𝑡)� = 𝑊̈𝑊0(𝑡𝑡).                    (42) 
 
The function 𝜓𝜓�𝑡𝑡,𝑃𝑃(𝑡𝑡)� can be determined from (36) making 
use of (2) and (37). 

From (40)-(42) one can easily find  
 

𝑊̇𝑊0(𝑡𝑡0) = � 𝜓𝜓(𝜏𝜏,𝑃𝑃)

𝑡𝑡0

0

𝑑𝑑𝑑𝑑                     (43) 

and  
 

𝑊𝑊0(𝑡𝑡0) = � �𝜓𝜓
𝜏𝜏

0

𝑡𝑡0

0

(𝜉𝜉,𝑃𝑃)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.            (44) 

 
The values of the deflection and its velocity given by (43), 

(44) will be used as initial conditions for the second stage of 
deformation. 
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B.   The second stage (𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1) 
It is assumed that at the moment 𝑡𝑡 = 𝑡𝑡0 the transverse 

loading is abrupt-wisely removed and the subsequent motion 
takes place due to the inertia. During the final stage of motion 
𝑃𝑃 = 0 and thus according to (38) 𝑡𝑡 = 𝑡𝑡∗ and the velocity is to 
be calculated as (here 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡1]) 
 

𝑊̇𝑊0(𝑡𝑡) = �𝜓𝜓
𝑡𝑡

𝑡𝑡0

(𝜏𝜏, 0)𝑑𝑑𝑑𝑑 + 𝑊̇𝑊0(𝑡𝑡0).       (45) 

 
Similarly, the transverse deflection during this stage is  
 

𝑊𝑊0(𝑡𝑡) = � �𝜓𝜓
𝜏𝜏

𝑡𝑡0

𝑡𝑡

𝑡𝑡0

(𝜉𝜉, 0)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑊̇𝑊0(𝑡𝑡0)(𝑡𝑡 − 𝑡𝑡0) + 𝑊𝑊0(𝑡𝑡0). (46) 

 
The motion ceases at the moment 𝑡𝑡 = 𝑡𝑡1 when 𝑊̇𝑊0(𝑡𝑡1) = 0. 

The quantity 𝑡𝑡1 is calculated from the equation  
 

� 𝜓𝜓

𝑡𝑡0

0

�𝜏𝜏,𝑃𝑃(𝜏𝜏)�𝑑𝑑𝑑𝑑 + � 𝜓𝜓

𝑡𝑡1

𝑡𝑡0

(𝜏𝜏, 0)𝑑𝑑𝑑𝑑 = 0.       (47) 

 
Making use of (40), (41), (45) one can determine the maximal 
residual deflection as 
 

𝑊𝑊0(𝑡𝑡1) = � �𝜓𝜓
𝜏𝜏

𝑡𝑡0

𝑡𝑡1

𝑡𝑡0

(𝜉𝜉, 0)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + � 𝜓𝜓

𝑡𝑡0

0

�𝜏𝜏,𝑃𝑃(𝜏𝜏)�𝑑𝑑𝑑𝑑(𝑡𝑡1 − 𝑡𝑡0)

+ 𝑊𝑊0(𝑡𝑡0),                                                      (48) 
 
where the last term is to be calculated from (46) for 𝑡𝑡 = 𝑡𝑡0. 

Making use of (16) and (48) one can calculate residual 
deflections at each 𝑟𝑟 ∈ [𝑎𝑎,𝑅𝑅] as 
 

𝑊𝑊(𝑟𝑟, 𝑡𝑡1) = 𝑊𝑊0(𝑡𝑡1)
𝑟𝑟 − 𝑅𝑅
𝑎𝑎 − 𝑅𝑅

.                   (49) 
 

The residual deflections have been calculated in a greater 
detail in the case when 
 

𝑃𝑃(𝑡𝑡) = 𝑝𝑝0𝑒𝑒−𝛽𝛽𝛽𝛽  
 

during the loading stage of deformation. 

VII. NUMERICAL RESULTS AND DISCUSSION 
The deflections of the shell at the free edge and at 𝑟𝑟 = 𝑎𝑎1 

are shown in Fig. 5. Here the dashed lines correspond to the 
shell with constant thickness ℎ0, whereas solid lines are 
associated with stepped shells (ℎ1/ℎ0 = 2). As it might be 
expected the higher couple of curves presents the transverse 
deflections at the free edge of the shell whereas the lower pair 
of curves corresponds to the circle where the step is located. It 
can be seen from Fig. 5 that in both cross sections of the shell 
the transverse displacements monotonically increase during 
the first stage of deformation. 

The variation of the radial bending moment with the 
variation of the load intensity is shown in Fig. 6. Fig. 6 is 

calculated for a shell with piece wise constant thickness with 
two thicknesses and the step at 𝑎𝑎1 = 0,55𝑅𝑅. Here ℎ1 =
1,5ℎ0; 𝑘𝑘 = 0,3 whereas  
 

𝑝𝑝 =
𝑃𝑃𝑃𝑃

𝑀𝑀00 sin𝜑𝜑
; 𝑘𝑘 =

𝑀𝑀00 cos𝜑𝜑
𝑅𝑅𝑁𝑁00 sin𝜑𝜑

. 
 

In Fig. 6-11 the following notation is used 
 

𝑚𝑚1 =
𝑀𝑀1

𝑀𝑀00
, 𝜚𝜚 =

𝑟𝑟
𝑅𝑅

,𝛼𝛼 =
𝑎𝑎
𝑅𝑅

,𝑊𝑊2 = 𝑊𝑊(𝑎𝑎, 𝑡𝑡1) 

 
Fig. 5. Deflections at 𝑟𝑟 = 𝑎𝑎 and 𝑟𝑟 = 𝑎𝑎1 

 
It can be seen from Fig. 6 that the higher is the pressure 

loading the higher is the radial bending moment, as might be 
expected. The curves depicted in Fig. 6 have slope 
discontinuities at 𝑟𝑟 = 0,55𝑅𝑅.  
 

 
Fig. 6. Bending moment distributions 

 
The discontinuities are caused by the step of the thickness. 

The radial bending moment distributions are shown for 
blast loaded shells at 𝑡𝑡 = 𝑡𝑡0 and 𝑡𝑡 = 𝑡𝑡1 in Fig. 7 and Fig. 8, 
respectively. Solid lines in Fig. 7, 8 correspond to shells with 
two steps located at 𝑟𝑟 = 0,6𝑅𝑅 and 𝑟𝑟 = 0,65𝑅𝑅, respectively. 
The dashed lines correspond to the shell of constant thickness. 
The considered shells have the ratios of thicknesses ℎ1 =
2ℎ0, ℎ1 = 1,5ℎ0 and ℎ1 = 1,25ℎ0, respectively.  
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Fig. 7. Bending moment distributions at 𝑡𝑡 = 𝑡𝑡0 

 
 

Fig. 8. Bending moment distributions at 𝑡𝑡 = 𝑡𝑡1 
 

The maximal residual deflections for different inner radii and 
different loading times are shown in Fig. 9 and Fig. 10. In Fig. 
10 dashed lines correspond to shells with two steps (here 
𝛼𝛼1 = 0,6; 𝛼𝛼2 = 0,65) and the solid lines correspond to shells 
with a unique step. Here the corresponding couples of curves 
are associated with the loading time 𝑡𝑡0 = 0,3; 𝑡𝑡0 = 0,4 and 
𝑡𝑡0 = 0,5, respectively. In the case of solid lines ℎ1 = 1,2ℎ0. 
However, in the case of dashed lines ℎ1 = 2ℎ0. It can be seen 
from Fig. 9 that the longer is the loading period the greater is 
the residual deflection of the shell, as might be expected. 
 

 
 

Fig. 9. Maximal residual deflections for different inner radii 
 

 
 

Fig. 10. Maximal residual deflections for different thicknesses 
 

It is interesting to mention that the static limit load for a 
conical shell subjected to the uniformly distributed lateral 
loading can be obtained from (36) taking 𝑊̈𝑊 = 0. The limit 
loads of the open shell calculated by the current method are 
compared with the results of Xu et al [23] in Fig. 11. 
Calculations carried out showed that the results are quite close 
to each other.  
 

 
 

Fig. 11. Limit loads 

VIII. CONCLUSIONS 
Making use of an approximation of the exact yield surface 

an approximate method for determination of residual 
deflections of conical shells was developed. The shells under 
consideration are subjected to the blast loading. Statically 
admissible distributions of generalized stresses have been 
found under the assumption that the material of the shell is a 
perfect plastic material. The obtained solution is an exact 
solution in the range of moderate values of the load intensities. 
In the case of very high pressure loadings this approach leads 
to approximate values of residual deflections. In the future this 
method will be used for determination of residual deflections 
of shells with continuously variable thicknesses. In this case 
one has to approximate the variable thickness to a piece wise 
constant one with appropriate thicknesses and step 
coordinates. 
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